

Clean Energy For Our World™

Iowa Energy Summit Des Moines, Iowa 10 October 2024

mCHP - The Elegant Solution

A solution is regarded as 'elegant' when it is simple and effective in addressing an otherwise complex problem.

Clean energy solutions often are expensive and lack simplicity, efficiency, reliability, and effectiveness.

micro Combined Heat & Power (mCHP) provides a clean energy solution that is reliable, simple and effective while offering substantial financial savings.

While there is no regulatory definition of what distinguishes a combined heat and power (CHP) system from a *micro* combined heat and power system (mCHP), it is generally accepted that any co-generation system that produces under 50kW is considered "micro."

mCHP Advantages

- mCHP is typically >85% efficient, which is higher than standard CHP systems
- Some mCHP systems can be connected to operate in parallel, allowing for more flexibility where heat loads fluctuate to fall below the threshold necessary to activate larger CHP systems
- mCHP can address a niche energy market that cannot be adequately serviced by larger CHP systems
- mCHP systems can be adaptable to mobile applications
- mCHP can make the power grid more resilient
- mCHP does not expire into toxic waste, is not impacted by weather or time of day, and significantly limits any impact on wildlife and the environment

mCHP - Innovative Technology

4

Axiom Energy mCHP System Overview

- Marathon Engine
- Heat Exchanger
- Power Inverter
- System Controller
- Engine Controller
- Control Interface

Compact & Modular

1.2 - 4.4 kWh of electricity
15,000 - 47,000 btu/hr of heat - Propane
13,000 - 42,500 btu/hr of heat - NG
Exhaust Gas Temperature 180⁰ F
Overall efficiency = 93%
55dB

Axiom Energy's Marathon® Engine

4,000 hour maintenance interval Equivalent to 160,000 miles

Rated for 40,000 hours

Equivalent to 1.6 million miles Tested in excess of *100,000* hours Components can be replaced or reconditioned

Specifications

8 HP, single cylinder, water cooled, 4 cycle, no belts 272cc 12.8/1 compression Modulating 1200 - 3400 rpm 11 litre sump

Resiliency

Matrix of DER Vulnerability to Weather Events

US Department of Energy 2018

7

Typical Applications

Residential

Commercial

Fitness Centers

Multifamily

mCHP - Myths and Misconceptions

- 1. mCHP effectiveness in colder climates during colder months
- 2. mCHP in applications that have large energy demands
- 3. mCHP consumption of fuel
- 4. mCHP compatibility with other clean energy options

Any Climate, Any Region, Any Time of Year

The primary function of mCHP is to produce hot water, which is needed at all times for cleaning and sanitation functions such as laundry, hot showers, dishwashing, etc. The use of hot water for these functions is consistent regardless of the outdoor weather and temperature. A load of laundry does not require less hot water and a dishwashing cycle does not shorten because of weather. The amount of hot water used in these situations remains constant regardless of outdoor temperature, cold or hot. Electric generation is essentially a by product from the production of hot water. Therefore, in applications that require high volumes of hot water, mCHP will always offer a clean energy solution, regardless of climate, region, or time of year.

Case Study - Electric Production - Milwaukee, WI

Sample Temperatures 2022 June 21 = 100° June 14 = 99° June 15 = 95° June 20 = 94° June 30 = 94°

NOTE:

The highest electrical production was during the <u>warmer</u> months because there were vacancies in the cooler months. Once full occupancy was reached, more hot water was being consumed, therefore the mCHP operated more hours.

	Jun 2022	May 2022	Jun 2021	
Billing Days	34	30	30	
Avg Temp	62°F	47°F	63°F	
Heating Deg Days	131	474	169	
Cooling Deg Days	83	5	120	
KWH Used	-599	-629	1668	
Avg KWH / Day	-17.6	-21	55.6	
Therms Used	746.2	991.1	777	
Avg Therms / Day	21.9	33	25.9	
Utility Gas Cost	\$0.35	\$0.35	\$0.35	
	Graphs			
Usage by Month	HT 🔲	nerms	KWH	
2000				
1325				
650			•	
-25	╷╇╷╇╷╉╷╃╷	╵┫╵┫╵╼╜		

Over 50% of the days June - August had high temperatures between 80^o - 100^o F

mCHP offers agile solutions in large applications

mCHP benefits any application that has large thermal and electrical requirements. mCHP is designed for 24/7/365 operation to provide the most financial and environmental benefits. Therefore, an application with thermal demands that exceed the capacity of the mCHP system will ensure that it remains in constant operational mode. Where appropriate, several mCHP systems can be connected to operate in parallel to meet the thermal demands of the application. Scaling up this way offers significant agility and flexibility in the application since it allows for some systems to slow down or shut down without shutting the entire system off. In comparison to one single large CHP system which is either on or off, this can offer significant advantages.

Case Study - YMCA - Mukwonago, WI

YMCA Sports & Fitness Center

Two mCHP systems provide heat for two pools: an 80,391 gallon lap pool and a 105,995 gallon recreational pool.

Electrical Output

While creating the thermal energy to keep those two pools at a specific temperature, each unit is capable of generating 4.4 kWh of electricity, for a total combined production of **6,424 kW per month**

Benefits

Natural gas that would have otherwise been directed through a traditional pool heater is instead run through the mCHP systems first, producing heat for the pools and generating electricity that is used on site. This reduces the amount of electricity purchased from the utility, saving the YMCA several thousands of dollars each year while *reducing its annual carbon footprint by over 40 metric tons*

Case Study - Electric Production - Milwaukee, WI

110 Unit Apartment Building

Acc Bill Period: 1	ount Summa 2/29/2022 to	ary 01/26/2023	3	Acco Bill Period: 01	unt Summai /27/2023 to 0	r y 12/23/2023		Account Summary Bill Period: 02/24/2023 to 03/26/2023			3.
	Jan	N	Jan		Feb	' Fel	2		Mar	· · · · · · ·	Mar
107.92	2023		2022		2023	202:	2		2023		2022
Billing Days	29		29	Billing Days	28	29		Billing Days	31		32
Avg Temp	36°F		22°F	Avg Temp	29°F	25°	*	Avg Temp	35°F		35°F
Heating Deg Days	849		1239	Heating Deg Days	996	117:	2	Heating Deg Days	920		951
Cooling Deg Days	0		n	Cooling Deg Days	0			Cooling Deg Days	0		0
KWH Used	2000		4840	KWH Used	1920	488		KWH Used	2160		5160
Avg KWH / Day	69		166.9	Avg KWH / Day	68,6	168.3	3	Avg KWH / Day	69.7		161.2
Utility Gas Cost	\$0.50		\$0.35	Utility Gas Cost	\$0.50	\$0.3	5	Utility Gas Cost	\$0.50		\$0.35

60% Reduction in Electric Consumption Approximately 3,000kW per month avoided

mCHP can reduce gas consumption

In some applications, mCHP can reduce the consumption of gas because of its efficiency in producing hot water. A typical central hot water heater or boiler system cycles on and off several times during the day, often times operating for only a few minutes at a time, while the mCHP system will provide a steady supply of heat. This results in a more efficient supply of hot water with less consumption of gas.

Case Study - Gas Consumption - Milwaukee, WI

Accour Bill Period: 05/1	nt Summary 2/2022 to 06/14/2	2022	Account Bill Period: 06/14	t Summary 4/2022 to 07/14/	2022	Accoun Bill Period: 07/14	t Summary 1/2022 to 08/12/2	022	Accoun Bill Period: 08/12	t Summary 2/2022 to 09/1	3/2022
	Jun	Jun 2021		Jul 2022	Jul 2021		Aug 2022	Aug 2021		Sep 2022	Sep 2021
Billing Days	34	30	Billing Days	31	35	Billing Days	30	28	Billing Days	33	30
Avg Temp	62°F	63°F	Avg Temp	72°F	72°F	Avg Temp	73°F	74°F	Avg Temp	69°F	74°F
Heating Deg Days	131	169	Heating Deg Days	4	4	Heating Deg Days	0	0	Heating Deg Days	5	0
Cooling Deg Days	83	120	Cooling Deg Days	293	247	Cooling Deg Days	294	266	Cooling Deg Days	214	284
KWH Used	-599	1668	KWH Used	-656	1821	KWH Used	-550	1449	KWH Used	-572	1594
Avg KWH / Day	-17.6	55.6	Avg KWH / Day	-21.2	52	Avg KWH / Day	-18.3	51.8	Avg KWH / Day	-17.3	53.1
Therms Used	746.2	777	Therms Used	445.4	633.1	Therms Used	390.8	533.2	Therms Used	472.8	731.1
Avg Therms / Day	21.9	25.9	Avg Therms / Day	14.4	18.1	Avg Therms / Day	13	19	Avg Therms / Day	14.3	24.4
Utility Gas Cost	\$0.35	\$0.35	Utility Gas Cost	\$0.35	\$0.35	Utility Gas Cost	\$0.35	\$0.35	Utility Gas Cost	\$0.35	\$0.35
G	iraphs		G	raphs		Gr	aphs		Graphs		
Usage by Month	Therms	KWH	Usage by Month	Therms	KWH	Usage by Month	Therms	KWH	Usage by Month	Therms	s KWH
2000			2000			2000	•		2000		
1325			1325 · · · ·	· • • • • • • • • • •		1325 • • • • • • •			1325		
650 · · · · · · · · · · · · · · · · · · ·					·	650			650		
-25		┛┛┛┛	-25	┉┉┉╻╷╖	▋▋▋	-25	┉┉╓┉┵╓		-25	╹╹╹╹╹╹	°°₽°₽°₽°₽°.
Jun Jul Sep	Oct Jan Jan Mar	Apr May Jun	Jul	Nov Dec Jan Feb Mar	Jun	Aug Sep Oct Nov	Jan Feb Mar Apr May		Sep Nov	Apr May	Jul-Jul

Average Gas Consumption Reduced 27.21%

Case Study - Financial Benefits - Milwaukee, WI

32 Unit Apartment Building

Annual Savings

Electric =	36,572kW	=	\$5,851.52
------------	----------	---	------------

Gas = 2,190 Therms = \$1,883.40

Total Savings \$

Increased Property Value \$154,700

mCHP can be Integrated with Other Solutions

The agility of mCHP allows it to be integrated with other technologies to offer a more holistic approach to clean energy. mCHP can be paired with solar and wind to offer consistent electric generation when other options are not functioning, and when thermal loads are not enough to keep mCHP in operation, stored electricity supplied from solar and wind can fill the gap. Use of mCHP with opter options also can reduce the size and cost of projects by reducing the amount of solar or wind infrastructure needed.

mCHP with Microgrids

The (Very Near) Future - Renewable Biogas

How it works

Renewable Biogas allows mCHP systems to operate on a carbon neutral basis, essentially taking CO_2 from the atmosphere and converting it to a gas to power the systems. Any CO_2 that is released from the combustion of renewable biogas is simply recaptured and recycled into fuel.

How it is produced

Waste from agricultural activity (animal manure), or from human activity (landfills, discarded food, wastewater treatment facilities) or from harvested plants (switchgrass) is collected into digesters and converted into propane and methane. The gas is then distributed through the existing pipeline (methane) or distribution (propane) infrastructure.

How it will make an impact

All waste material from human and agricultural activity can be converted into clean energy, benefiting the environment by reducing the waste and instead capturing the gas that would otherwise be released into the atmosphere. Further, harvesting switchgrass has multiple benefits - (1) the roots remain in the soil to prevent soil erosion; (2) it can be grown on land that is otherwise unsuitable for any other purpose; (3) it can be harvested twice per growing season; (4) one acre of switchgrass can produce more energy than an acre of solar panels; (5) switchgrass does not destroy the habitat; (6) growing switchgrass generates constant residual economic and commercial activity.

2050 Energy Drive East Troy, Wisconsin 53120 (262) 642-6436 www.axiom-energy.com